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Perturbation theory for point interactions in three dimensions 

Petr Sebat and Harald Englisch 
Sektion Mathematik der Karl-Marx-Universitat Leipzig, DDR-7010 Leipzig, Karl-Marx- 
Platz. DDR 

Received 26 April 1985 

Abstract. The formal manipulation with 6-potentials modelling contact interactions is 
compared with the recent mathematical theory of this phenomenon. 

1. Introduction 

Contact interactions are widely used as an approximation of short-range potentials 
especially in those cases in which the explicit form of the potentials is unknown (cf 
Albeverio et a1 1984a and references therein). This contact interaction is often 
modelled by a heuristic Hamiltonian 

fiA = - A +  V(X)+ AS(x) (1) 

on a Hilbert space L2(R3), A being a coupling constant and 6 the Dirac measure at 
the origin. In one dimension, Hamiltonians with 8-potentials can be defined rigorously 
(Reed and Simon 1975, Ex. 3 to Th. 10.17) and they are the most applied potentials 
of solid state physics (Kronig and Penney 1931, Erd6s and Herndon 1982, Englisch 
1983). Though it has been known for a long time (Berezin and Fadeev 1961) that in 
more than one dimension the singularities of the 6-potential become so strong that it 
is not possible to define the heuristic Hamiltonian HA for non-zero A as a self-adjoint 
operator on L2(R3), 6-potentials are widely used in physics, especially in nuclear 
physics, molecular physics and solid state physics, for the description of short-range 
effects and one gets reasonable results (Thomas 1935, Fermi 1936, Das and Behrson 
1959, Schwartz 1959, ZeldoviE 1960, Schaefer and Yaris 1967, Blinder 1978). For 
example the first order of the perturbation theory applied to 

fiA = H0+A6(x) Ho=-A+ V(X), 

predicts an energy shift 

E - E"'= AlfO'(0)/*. 

where f'') is the eigenfunction of Ho corresponding to E"'. Since the eigenfunctions 
of the usual Hamiltonians Ho are bounded (Reed and Simon 1978, Th. 13.38) the 
energy shift is also bounded. 

t On leave of absence from the Nuclear Centre, Faculty of Mathematics and Physics, Charles University, 
V HoleSoviEkach 2, Prague, Czechoslovakia. 
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On the other hand there is a second possibility to describe contact interactions 
which is correct from the mathematical point of view (Berezin and Fadeev 1961, 
Alberverio et a1 1979). Let us first define the restricted operator Hk 

H ;  = H,I c?( R~\(O}).  

(Cr (R)  denotes the set of infinitely differentiable functions with compact support 
contained in R.) HF, is a symmetric operator with deficiency indices (1, 1) (Behnke and 
Focke 1978). Therefore a one-parameter family H ,  of its self-adjoint extensions exists 
(Reed and Simon 1975, Th. 10.2). These operators H ,  are used as Hamiltonians 
describing a particle moving under the influence of the potential V(x) and an additional 
contact interaction at 0. It is also possible to obtain these Hamiltonians H ,  as a 
perturbation of the operator Ha by sequences of potentials with shrinking supports 
(Albeverio and Hciegh-Krohn 1981, Seba 1985). 

The aim of this paper is to compare the formal 6-potential description of contact 
interactions with the rigorous one. Thus this article can be understood as a continuation 
of Englisch (1984). In § 2 we describe all self-adjoint extensions of H i .  In § 3 we 
show that the formal 8-potential approach yields in the first order of the perturbation 
theory the same eigenvalues as the rigorous approach does. The same holds for the 
scattering amplitudes as is shown in § 4. 

Thus the reasonable results obtained by the formal application of perturbation 
theory to formal Hamiltonians can be explained. 

2. Hamiltonians with point interactions 

Following Albeverio and H0egh-Krohn (1981) we describe Hamiltonians with point 
interactions by self-adjoint extensions of H & ,  where 

HF,= - A +  V(X), D ( H F , )  = C?(R~\{O}). 

In order to avoid inessential technicalities we confine ourselves to the potentials 
satisfying 

V(X)E L2(R3)+L"(R3), 

i.e. V = V2+ V, with 51 V2(x)I2 d3x <CO and sup,I V,(x)l <W.  (Cf Albeverio er a1 (1983) 
and Zorbas (1980) for the special case V(x) = l/lxl and Gesztesy and Pittner (1984) 
for short-range potentials V.) The conditions concerning V guarantee that 

Ho= - A +  V(X) 

is a self-adjoint operator with domain 

D(Ha)  = D(-A) = { f ~  L2(R3): A ~ E  L2(R3) in the sense of distributions} 

(Reed and Simon 1975, 0 10.2). It is known from the mathematical literature (Behnke 
and Focke 1978) that Hk has deficiency indices (1, 1). Consequently there is a one- 
parameter family H,, of its self-adjoint extensions. We interpret these operators H,, 
as Hamiltonians describing a particle under the additional influence of a zero-range 
interaction at 0. Obviously Ha is one of the self-adjoint extensions of HF,. 
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Knowing Ha we can apply the results by Zorbas (1980) who represents all the 
remaining extensions H, by means of Ha in the following way: 

Ha = - A +  V(X), 

D(H,)  = { f ~  LZ(R3):f(x) = g ( x ) +  c(G(x, 0, i )  -e'"G(x, 0, -i)), 

g (x)  E D ( Z ) ,  c E C }  CY E [O, 2T), 
where G(x, y,  z) is the Green function of Ho, 

p ( z , a ) = ( l - e i m )  G(y,0,z)G(y,0, i )d3y 

- 1  

-e ia ( i+z)  5 G(y,0,z)G(y,0,-i)d3y) , (3) 

This relation implies that Ha=o = Ho. 
Now we want to compare the eigenvalues of the Hamiltonian Ha with the formal 

eigenvalues obtained by applying the perturbation theory to the formal Hamiltonian 
HA from (1). 

3. Perturbation of eigenvalues by point interactions 

We note once more that fiA as defined in (1) represents only a formal Hamiltonian 
since it cannot be defined as a self-adjoint operator on LZ(R3) for non-zero A.  Moreover 
the term hs(x)  is not bounded with respect to Ha in any sense such that the conditions 
for the applicability of perturbation theory (Reed and Simon 1978, Th. 12.8) are not 
fulfilled. 

Nevertheless, applying the perturbation theory to the formal Hamiltonian (1) and 
assuming that there is no degeneracy of the eigenvalues of Ho, one gets for the nth 
eigenvalue E, ( A  ) of fi,, 

(4) 
where E r '  andfr ' (x)  are the nth eigenvalue and the nth eigenvector of Ha, respectively: 

E,  ( A  ) = E?) + A I fLo)(  0) l 2  + O( A 2 ,  

Haf:'(x) = E',O'f:o'(x). 

The term If?'(O)l' is bounded since eigenfunctions of the operator Ho are bounded 
in R3 (Reed and Simon 1978, Th. 13.38). In spite of its very formal derivation, relation 
(4) is often used in physics and yields reasonable results. The following theorem 
reveals the cause for this. 

Theorem. Let E',"' be the nth eigenvalue of Ha. Then for every n and small a it holds 

- I  

EP'=E',O'+a\fL0)(O)\' /G(x,0,i)/2d3x) +O(a2). 
that 
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ProoJ: Let e , ( a )  be an eigenvalue of ( H ,  +i)-’: 

[ ( H ~  +i)-’f?’](x) = e,(a)f?’(x). 

E ( ” )  n = (1 - i e n ( a ) ) / e n ( a ) .  ( 5 )  

Obviously it holds that 

Using relations (2) and (3) ,  choosing z = -i and developing p(-i ,  a )  up to first order 
we get 

(Ha +i)-’  = (H0+i)-’  - aG(x,  0, - i )  
- 1  

(G(x, 0, i)l’ d’x) + O ( a z ) .  

The ordinary perturbation theory applied to ( 6 )  yields for small a 

e n ( a )  = en(0)+ae‘ ,“+O(a2)  

with 

e:’’= -( 1 G(x, 0, -i)fAo’(x) d3x)?(2 1 IG(x, 0, i)l’ d3x ) - I  . 

Due to 

G(x, 0, -i)f!,”(x) d’x = [(Ho+i)-’f~o’](0) = e,(O)f:’(O) 

it follows that 

e:’= -en(0)2(f?’(O))2(  2 I G ( x ,  0, i)I2 d3x >’ . 
Inserting (7) and (8) into ( 5 )  we complete the proof. 

This theorem rigorously provides the eigenvalues of the true point-interaction 
Hamiltonian Ha in the first order of perturbation theory. We see that for every n they 
coincide with the formal expression (4) if we put the coupling constant 

A = a( 2 1 /G(x, 0, i)(’ d’x)’ .  
R 

The second order of the perturbation theory for fiA diverges as was already remarked 
in several papers (cf for example Velenik et al (1970)), but every order for Ha is 
converging. 

4. Perturbation of scattering amplitudes by point interactions 

Here we only treat the perturbation of the free Hamiltonian Ho = -A by a point 
interaction. The investigation of the free Hamiltonian was not possible in 0 3 since 
the Laplacian has no eigenvalues. 

Formally applying the Born approximation, i.e. the perturbation theory for scatter- 
ing, to the formal Hamiltonian 

fiA =-A+hs(x)  ( 9 )  
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we get in the first order the on-shell scattering amplitude 

But the second order is divergent since 

In spite of its purely formal character the first-order Born approximation (10) is also 
used in physics (Dawydow 1967, § 115) and it again leads to reasonable results. 

For the correct Hamiltonian He Albeverio et a1 (1984b) explicitly calculated the 
on-shell scattering amplitude 

f i a ) ( k ,  k ' )  = { 2 ~ [ s i n ( a / 2 +  rr /4) /cos(a/2+ ~ / 2 )  -i lk1/(4~)]}- ' .  

The Taylor expansion off" ' (k ,  k ' )  yields for small a 

f"= -a/(2JZ7r) 

which agrees for all k and k' with the formal expression (10) if we put the coupling' 
constant A = &a. But in contrast to (11) the true scattering amplitude exhibits no 
divergences in the second order. 

5. Conclusions 

The &distribution in three dimensions has sometimes been considered (Harrison 1966, 
Dawydow 1967,O 115, Bartram et a1 1968, Weber and Dick 1969) as a pseudopotential, 
i.e. as a potential producing nearly the same eigenvalues or scattering amplitudes as 
the true short-range potential. On the other hand it has been known for a long time 
that the 8-potential in three dimensions leads to unphysical features like non-self- 
adjoint operators. Nevertheless it was successfully used in many calculations which 
may be explained now by the fact that the &distribution is a pseudopotential in a new 
sense: in the first order the formal application of the perturbation theory to Ho+A6 
results in the same values as the correct perturbation theory applied to a rigorously 
defined Hamiltonian with point interaction does. 

For a recent attempt to define pseudopotentials in five dimensions, cf Grossmann 
and Wu (1984). Their paper is based on an alternative approach to define point 
interactions in three dimensions, cf e.g. Breit (1947), Breit and Zilsel (1947), Huang 
and Yang (1957), Huang et a1 (1957), Lee et a1 (1957), Wu (1959) and Blatt and 
Weisskopf (1959, § 11.3). 
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